Choosing the Right AI Approach for Your Project
Training Large Language Models or use Retrieval-Augmented Generation Systems. What is the best option to achieve our need
In all the projects I've done so far, one of my biggest challenges has been selecting the best way to achieve the desired result. When building an AI project, one of the most significant technical decisions is whether to train a model with your own data or to use a Retrieval-Augmented Generation (RAG) system in front of the model before generating any answer.
Training a Large Language Model (LLM) and deploying a Retrieval-Augmented Generation (RAG) system are two distinct approaches to building AI applications capable of generating natural language text.
Understanding the differences between these approaches, their benefits, drawbacks, and ideal use cases is essential for AI practitioners and decision-makers seeking to select the best solution for their projects.
Training an LLM is the process of teaching a neural network model to generate language by exposing it to large datasets of text. The model learns to predict the next word or token based on context, capturing knowledge implicitly in its fixed parameters. This training can be done initially (pretraining) on massive and varied corpora or further refined (fine-tuning) on specialized datasets to adapt to specific tasks or domains.
LLM training is a complex process that transforms raw text into intelligent language understanding. Here's how it works step by step:
# LLM Training Pipeline
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
from datasets import Dataset
class LLMTrainingPipeline:
def __init__(self, model_name="gpt2", max_length=512):
self.model = GPT2LMHeadModel.from_pretrained(model_name)
self.tokenizer = GPT2Tokenizer.from_pretrained(model_name)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.max_length = max_length
def prepare_training_data(self, texts):
"""Convert raw text into training format"""
# Tokenize texts
def tokenize_function(examples):
return self.tokenizer(
examples['text'],
truncation=True,
padding=True,
max_length=self.max_length,
return_tensors="pt"
)
# Create dataset
dataset = Dataset.from_dict({"text": texts})
tokenized_dataset = dataset.map(tokenize_function, batched=True)
return tokenized_dataset
def train_model(self, training_data, output_dir="./trained_model"):
"""Train the model on prepared data"""
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=3,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=100,
save_steps=1000,
evaluation_strategy="steps",
eval_steps=1000,
load_best_model_at_end=True,
)
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=training_data,
tokenizer=self.tokenizer,
)
trainer.train()
return trainer
# Usage example
pipeline = LLMTrainingPipeline()
training_texts = [
"Machine learning is a subset of artificial intelligence...",
"Neural networks are inspired by biological neurons...",
"Deep learning uses multiple layers of neural networks..."
]
training_data = pipeline.prepare_training_data(training_texts)
trainer = pipeline.train_model(training_data)
Foundation Learning
Task Specialization
# Simplified Transformer Training
class TransformerTraining:
def __init__(self, vocab_size, d_model=512, n_heads=8, n_layers=6):
self.vocab_size = vocab_size
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
def forward_pass(self, input_ids, attention_mask):
"""Forward pass through transformer layers"""
# 1. Embedding Layer
embeddings = self.embedding(input_ids) # [batch, seq_len, d_model]
# 2. Positional Encoding
pos_encoding = self.positional_encoding(embeddings)
# 3. Multi-Head Attention Layers
for layer in range(self.n_layers):
# Self-attention mechanism
attention_output = self.multi_head_attention(
pos_encoding, pos_encoding, pos_encoding, attention_mask
)
# Feed-forward network
ffn_output = self.feed_forward(attention_output)
# Residual connection and layer normalization
pos_encoding = self.layer_norm(attention_output + ffn_output)
# 4. Output projection
logits = self.output_projection(pos_encoding) # [batch, seq_len, vocab_size]
return logits
def compute_loss(self, logits, targets):
"""Compute cross-entropy loss for next token prediction"""
# Shift targets for next token prediction
shift_logits = logits[..., :-1, :].contiguous()
shift_targets = targets[..., 1:].contiguous()
# Flatten for loss computation
loss = F.cross_entropy(
shift_logits.view(-1, shift_logits.size(-1)),
shift_targets.view(-1),
ignore_index=-100
)
return loss
def training_step(self, batch):
"""Single training step"""
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# Forward pass
logits = self.forward_pass(input_ids, attention_mask)
# Compute loss
loss = self.compute_loss(logits, input_ids)
# Backward pass
loss.backward()
return loss.item()
Technique | Purpose | Memory Savings | Speed Improvement | Use Case |
---|---|---|---|---|
Gradient Accumulation | Simulate larger batch sizes | 50-75% | 2-4x slower | Large models on limited hardware |
Mixed Precision (FP16) | Use half-precision for training | 50% | 1.5-2x faster | Standard for modern training |
Gradient Checkpointing | Trade compute for memory | 60-80% | 20-30% slower | Very large models |
LoRA/QLoRA | Train only adapter layers | 90%+ | 3-5x faster | Fine-tuning on consumer hardware |
DeepSpeed ZeRO | Distribute model across GPUs | Linear with GPU count | Near-linear scaling | Multi-GPU training |
# Training Data Requirements Analysis
class TrainingDataAnalyzer:
def __init__(self):
self.data_requirements = {
"small_model": {
"parameters": "100M-1B",
"data_size": "10GB-100GB",
"training_time": "1-7 days",
"hardware": "Single GPU (RTX 4090)",
"cost": "$50-500"
},
"medium_model": {
"parameters": "1B-10B",
"data_size": "100GB-1TB",
"training_time": "1-4 weeks",
"hardware": "Multi-GPU (4-8 GPUs)",
"cost": "$1,000-10,000"
},
"large_model": {
"parameters": "10B-100B",
"data_size": "1TB-10TB",
"training_time": "1-6 months",
"hardware": "GPU Cluster (100+ GPUs)",
"cost": "$100,000-1,000,000"
}
}
def analyze_data_quality(self, dataset):
"""Analyze training data quality"""
quality_metrics = {
"diversity": self.calculate_diversity(dataset),
"coherence": self.calculate_coherence(dataset),
"relevance": self.calculate_relevance(dataset),
"size": len(dataset),
"token_count": self.count_tokens(dataset)
}
return quality_metrics
def recommend_training_strategy(self, data_size, budget, timeline):
"""Recommend training approach based on constraints"""
if data_size < 1_000_000: # < 1M examples
return "Fine-tuning existing model (LoRA/QLoRA)"
elif data_size < 10_000_000: # < 10M examples
return "Full fine-tuning with optimization techniques"
else: # > 10M examples
return "Full pretraining with distributed training"
# Example usage
analyzer = TrainingDataAnalyzer()
strategy = analyzer.recommend_training_strategy(
data_size=5_000_000,
budget=5000,
timeline="2_weeks"
)
print(f"Recommended strategy: {strategy}")
The following diagram shows the complete LLM training pipeline from raw data to deployed model:
45TB+ text from web, books, articles
Cleaning, filtering, tokenization
Learn general language patterns
Task-specific adaptation
Model serving and inference
Training Pipeline: From raw text data to deployed AI model. Each stage has different requirements and costs.
Model Size | Parameters | Training Time | Hardware Cost | Total Cost | Use Case |
---|---|---|---|---|---|
Small (GPT-2) | 117M | 1-3 days | $50-200 | $100-500 | Research, prototyping |
Medium (GPT-3.5) | 175B | 2-4 weeks | $10,000-50,000 | $100,000-1M | Production applications |
Large (GPT-4) | 1.7T+ | 2-6 months | $100,000-500,000 | $10M-100M | Cutting-edge research |
// Knowledge Base for Legal Domain Training
{
"documents": [
{
"id": "legal_001",
"content": "Contract law governs agreements between parties...",
"metadata": {
"domain": "legal",
"type": "contract_law",
"jurisdiction": "US",
"date": "2024-01-15"
}
},
{
"id": "legal_002",
"content": "Intellectual property rights include...",
"metadata": {
"domain": "legal",
"type": "intellectual_property",
"jurisdiction": "EU",
"date": "2024-01-20"
}
}
],
"training_parameters": {
"learning_rate": 0.0001,
"batch_size": 32,
"epochs": 100,
"optimizer": "AdamW"
}
}
A RAG system enhances a language model by integrating external information retrieval during the generation process. Instead of relying solely on pre-learned data embedded in model parameters, RAG queries external databases or knowledge bases in real time, retrieving relevant documents or data snippets to support accurate and current text generation.
The core of RAG systems relies on similarity search in high-dimensional vector spaces. Documents and queries are converted into dense vector representations (embeddings) where semantically similar content is positioned closer together in the vector space.
// Vector similarity calculation methods
class VectorSimilarity {
// Cosine Similarity (most common)
static cosineSimilarity(vecA, vecB) {
const dotProduct = vecA.reduce((sum, a, i) => sum + a * vecB[i], 0);
const magnitudeA = Math.sqrt(vecA.reduce((sum, a) => sum + a * a, 0));
const magnitudeB = Math.sqrt(vecB.reduce((sum, b) => sum + b * b, 0));
return dotProduct / (magnitudeA * magnitudeB);
}
// Euclidean Distance
static euclideanDistance(vecA, vecB) {
const sumSquaredDiffs = vecA.reduce((sum, a, i) => {
return sum + Math.pow(a - vecB[i], 2);
}, 0);
return Math.sqrt(sumSquaredDiffs);
}
// Dot Product Similarity
static dotProduct(vecA, vecB) {
return vecA.reduce((sum, a, i) => sum + a * vecB[i], 0);
}
}
// Example: Finding similar documents
const queryEmbedding = [0.2, 0.8, 0.1, 0.9, 0.3];
const documentEmbeddings = [
{ id: "doc1", vector: [0.1, 0.9, 0.2, 0.8, 0.4] },
{ id: "doc2", vector: [0.8, 0.1, 0.9, 0.2, 0.7] },
{ id: "doc3", vector: [0.3, 0.7, 0.1, 0.8, 0.2] }
];
// Calculate similarities
const similarities = documentEmbeddings.map(doc => ({
id: doc.id,
similarity: VectorSimilarity.cosineSimilarity(queryEmbedding, doc.vector)
}));
// Sort by similarity (highest first)
similarities.sort((a, b) => b.similarity - a.similarity);
console.log("Most similar documents:", similarities);
The following diagram shows how documents are positioned in a 3D vector space based on their semantic similarity:
3D Vector Space Visualization: Documents are positioned based on semantic similarity. The query point (red) finds the nearest neighbors (green) using cosine similarity.
Interactive 3D visualization shows how similarity search works in vector space. Documents with similar meaning are positioned closer together.
Vector similarity search is the mathematical foundation of RAG systems. Here are the key techniques used to find relevant documents:
Most Popular Method
Geometric Distance
Simple Multiplication
Specialized Techniques
// Why Cosine Similarity works best for text embeddings
// Example: Two documents about "machine learning"
const doc1 = "Machine learning algorithms learn from data";
const doc2 = "ML algorithms learn from data"; // Shorter version
// After embedding, we get vectors like:
const embedding1 = [0.8, 0.2, 0.6, 0.4, 0.9]; // Longer text
const embedding2 = [0.4, 0.1, 0.3, 0.2, 0.45]; // Shorter text (similar direction, different magnitude)
// Cosine similarity focuses on direction, not magnitude
const cosineSim = cosineSimilarity(embedding1, embedding2); // High similarity
const euclideanDist = euclideanDistance(embedding1, embedding2); // Large distance
// Result: Cosine similarity correctly identifies semantic similarity
// despite different text lengths, while Euclidean distance doesn't
When dealing with millions of documents, brute-force similarity search becomes impractical. Here are the optimization techniques used in production RAG systems:
// Advanced RAG System with Optimizations
class OptimizedRAGSystem {
constructor(vectorDB, llm, options = {}) {
this.vectorDB = vectorDB;
this.llm = llm;
this.options = {
topK: 5, // Number of results to retrieve
similarityThreshold: 0.7, // Minimum similarity score
useHNSW: true, // Hierarchical Navigable Small World
useQuantization: true, // Vector quantization for speed
useCaching: true, // Cache frequent queries
...options
};
}
async generateResponse(query) {
// 1. Check cache first
if (this.options.useCaching) {
const cached = this.getCachedResult(query);
if (cached) return cached;
}
// 2. Optimized similarity search
const relevantDocs = await this.optimizedSearch(query);
// 3. Rerank results for better accuracy
const rerankedDocs = await this.rerank(query, relevantDocs);
// 4. Generate response
const response = await this.generateWithContext(query, rerankedDocs);
// 5. Cache result
if (this.options.useCaching) {
this.cacheResult(query, response);
}
return response;
}
async optimizedSearch(query) {
const queryEmbedding = await this.embedQuery(query);
// Use HNSW (Hierarchical Navigable Small World) for fast approximate search
if (this.options.useHNSW) {
return await this.vectorDB.hnswSearch(queryEmbedding, {
topK: this.options.topK * 2, // Get more candidates for reranking
ef: 100 // Search parameter for HNSW
});
}
// Fallback to brute force for small datasets
return await this.vectorDB.bruteForceSearch(queryEmbedding, {
topK: this.options.topK
});
}
async rerank(query, documents) {
// Use a more sophisticated reranking model
const reranker = new CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2');
const pairs = documents.map(doc => [query, doc.content]);
const scores = await reranker.predict(pairs);
// Combine similarity score with rerank score
return documents
.map((doc, index) => ({
...doc,
finalScore: doc.similarity * 0.7 + scores[index] * 0.3
}))
.sort((a, b) => b.finalScore - a.finalScore)
.slice(0, this.options.topK);
}
}
// Usage with different optimization strategies
const ragSystem = new OptimizedRAGSystem(vectorDB, llm, {
topK: 10,
similarityThreshold: 0.75,
useHNSW: true, // Fast approximate search
useQuantization: true, // Reduce memory usage
useCaching: true // Cache frequent queries
});
Method | Speed | Accuracy | Memory Usage | Use Case |
---|---|---|---|---|
Brute Force | Slow | 100% | High | Small datasets (<10K docs) |
HNSW | Fast | 95-98% | Medium | Large datasets (1M+ docs) |
IVF | Medium | 90-95% | Low | Very large datasets (10M+ docs) |
Quantization | Very Fast | 85-90% | Very Low | Memory-constrained environments |
// RAG System Architecture
class RAGSystem {
constructor(vectorDB, llm) {
this.vectorDB = vectorDB;
this.llm = llm;
}
async generateResponse(query) {
// 1. Retrieve relevant documents
const relevantDocs = await this.vectorDB.similaritySearch(query, {
topK: 5,
threshold: 0.7
});
// 2. Format context for LLM
const context = relevantDocs.map(doc => doc.content).join('\n');
// 3. Generate response with context
const prompt = `Context: ${context}\n\nQuestion: ${query}\n\nAnswer:`;
return await this.llm.generate(prompt);
}
}
// Usage example
const rag = new RAGSystem(vectorDatabase, languageModel);
const response = await rag.generateResponse("What are the latest regulations on data privacy?");
Aspect | LLM Training | RAG System |
---|---|---|
Data reliance | Knowledge embedded in model weights | Real-time external data retrieval |
Model update procedure | Retraining or fine-tuning required | Update external knowledge base only |
Adaptability to new data | Limited until retrained | Highly adaptable, instant data updates |
Inference speed | Typically faster (no retrieval step) | Can be slower due to retrieval latency |
Handling changing information | Struggles without retraining | Excels in dynamic, evolving data |
Cost of updates | High computational cost | Lower cost, updates external data |
Offline capability | Can operate fully offline | Requires network or indexed data access |
Accuracy on recent info | May produce outdated or hallucinated responses | More accurate for current/factual queries |
Factor | Choose Training When... | Choose RAG When... |
---|---|---|
Data Freshness | Data is stable, rarely changes | Data changes frequently, needs real-time updates |
Latency Requirements | Ultra-low latency needed (<100ms) | Moderate latency acceptable (100-1000ms) |
Budget | High budget for training ($10K+) | Limited budget, need cost-effective solution |
Data Size | Large, high-quality datasets available | Small datasets, need external knowledge |
Domain Expertise | Deep domain knowledge needed | Broad, general knowledge sufficient |
Update Frequency | Infrequent updates acceptable | Frequent updates needed |
# Training a Creative Writing Model
class CreativeWritingTrainer:
def __init__(self):
self.training_data = [
"The old lighthouse stood majestically on the cliff, its beam cutting through the fog...",
"In the depths of the forest, a mysterious sound echoed through the ancient trees...",
"The scientist discovered something that would change everything we knew about time...",
"As the spaceship approached the alien planet, the crew prepared for the unknown...",
"The detective examined the crime scene, knowing that every detail mattered..."
]
def train_creative_model(self):
"""Train model for creative writing tasks"""
# 1. Prepare creative writing dataset
creative_dataset = self.prepare_creative_dataset()
# 2. Fine-tune on creative writing style
training_args = TrainingArguments(
output_dir="./creative_writing_model",
num_train_epochs=5,
per_device_train_batch_size=2,
learning_rate=5e-5,
warmup_steps=100,
logging_steps=50,
)
# 3. Train with creative writing prompts
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=creative_dataset,
tokenizer=self.tokenizer,
)
trainer.train()
return trainer
# Usage: Train for creative writing
trainer = CreativeWritingTrainer()
creative_model = trainer.train_creative_model()
# Generate creative content
prompt = "The last human on Earth looked up at the stars and..."
generated_text = creative_model.generate(prompt, max_length=200)
print(generated_text)
# Training script for creative writing model
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
# Load pre-trained model
model = GPT2LMHeadModel.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# Prepare training data
training_data = [
"The old lighthouse stood majestically on the cliff...",
"In the depths of the forest, a mysterious sound echoed...",
"The scientist discovered something that would change everything..."
]
# Tokenize training data
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, padding=True)
# Training configuration
training_args = TrainingArguments(
output_dir='./creative-writing-model',
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=500,
save_total_limit=2,
)
# Train the model
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_data,
tokenizer=tokenizer,
)
trainer.train()
# Customer Support RAG Implementation
import chromadb
from sentence_transformers import SentenceTransformer
from transformers import pipeline
class CustomerSupportRAG:
def __init__(self):
self.vector_db = chromadb.Client()
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
self.llm = pipeline('text-generation', model='gpt-2')
def add_knowledge_base(self, documents):
"""Add documents to knowledge base"""
embeddings = self.embedder.encode(documents)
self.vector_db.add(
embeddings=embeddings,
documents=documents,
ids=[f"doc_{i}" for i in range(len(documents))]
)
def query(self, question):
"""Query the RAG system"""
# 1. Retrieve relevant documents
query_embedding = self.embedder.encode([question])
results = self.vector_db.query(
query_embeddings=query_embedding,
n_results=3
)
# 2. Format context
context = "\n".join(results['documents'][0])
# 3. Generate response
prompt = f"Context: {context}\nQuestion: {question}\nAnswer:"
response = self.llm(prompt, max_length=200, num_return_sequences=1)
return response[0]['generated_text']
# Usage
rag_system = CustomerSupportRAG()
rag_system.add_knowledge_base([
"Our return policy allows 30-day returns...",
"Shipping is free for orders over $50...",
"Technical support is available 24/7..."
])
response = rag_system.query("What is your return policy?")
Let's enrich the article by adding concrete examples illustrating when it's advantageous to rely on LLM training versus a Retrieval-Augmented Generation (RAG) system.
In applications like creative writing, script generation, or chatbot dialogue where inventiveness and fluent language matters more than up-to-date factual knowledge, training an LLM extensively beforehand is ideal. For instance, AI writing assistants or content generation tools used in marketing campaigns benefit from deep training that enables stylistic nuance and coherent narrative without needing to query external facts constantly.
Customer support chatbots embedded in devices or offline applications (e.g., onboard automotive assistants) that require instantaneous responses with no network dependency rely better on fully trained LLMs. Their speed and independence from external retrieval systems reduce latency and increase robustness.
Industries like legal or scientific research may prefer training LLMs on curated, stable corpora (law codes, research papers). This fixed knowledge enables focused, reliable reasoning without frequent updates, given the low pace of core domain changes.
A financial advisory chatbot needing to provide up-to-the-minute stock prices, regulations, or company financials cannot rely solely on static LLM knowledge. A RAG system retrieving from live databases ensures accuracy and currency.
Companies with large, evolving product catalogs or support articles deploy RAG-augmented assistants to pull the latest manuals, FAQs, or warranty details dynamically, avoiding the costly retraining of models whenever content changes.
Tools monitoring regulatory changes, scientific publications, or news in real time benefit from retrieval integration. For example, a pharmaceutical company tracking new drug approvals uses RAG to remain current without retraining.
It is possible and often advantageous to combine the two approaches. A hybrid model uses an LLM's rich internalized knowledge while augmenting it with retrieval of up-to-date data. This approach balances creativity and stability from the trained model with factual accuracy and adaptability from retrieval, suitable for complex domains like biomedical research or financial forecasting.
Hybrid approaches excel in complex environments, like healthcare virtual assistants that generate empathetic, context-aware language via an LLM but query live patient records or medical databases (via RAG) to provide precise recommendations. This balances fluency, personalization, and factual correctness.
# Hybrid LLM + RAG System
class HybridAISystem:
def __init__(self, trained_llm, rag_system):
self.llm = trained_llm
self.rag = rag_system
async def generate_response(self, query, use_rag=True):
if use_rag:
# Use RAG for factual queries
relevant_docs = await self.rag.retrieve(query)
context = self.format_context(relevant_docs)
prompt = f"Context: {context}\nQuery: {query}\nResponse:"
else:
# Use pure LLM for creative tasks
prompt = f"Generate creative content for: {query}"
return await self.llm.generate(prompt)
# Usage example
hybrid_system = HybridAISystem(trained_model, rag_system)
# For factual queries
factual_response = await hybrid_system.generate_response(
"What are the latest FDA drug approvals?",
use_rag=True
)
# For creative tasks
creative_response = await hybrid_system.generate_response(
"Write a poem about artificial intelligence",
use_rag=False
)
The choice between training a Large Language Model and implementing a Retrieval-Augmented Generation system depends on multiple factors: the need for current information, cost and resource availability, latency tolerances, and the specifics of the application domain. While LLM training offers speed and independence from external data, RAG provides flexibility to continuously integrate new information cost-effectively and accurately. Hybrid systems promise to bring the best of both worlds to scalable AI solutions.